50 research outputs found

    Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation

    Get PDF
    Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distributed computing resources. Automated analysis of continuous streaming electrophysiology is synchronized with patient reports using a handheld device and integrated with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes and patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for interictal epileptiform spikes and seizures were developed and parameterized using long-term ambulatory data from nine humans and eight canines with epilepsy, and then implemented prospectively in out-of-sample testing in two pet canines and four humans with drug-resistant epilepsy living in their natural environments. Accurate seizure diaries are needed as the primary clinical outcome measure of epilepsy therapy and to guide brain-stimulation optimization. The brain co-processor system described here enables tracking interictal epileptiform spikes, seizures and correlation with patient behavioural reports. In the future, correlation of spikes and seizures with behaviour will allow more detailed investigation of the clinical impact of spikes and seizures on patients

    Vitamin D supplementation and breast cancer prevention : a systematic review and meta-analysis of randomized clinical trials

    Get PDF
    In recent years, the scientific evidence linking vitamin D status or supplementation to breast cancer has grown notably. To investigate the role of vitamin D supplementation on breast cancer incidence, we conducted a systematic review and meta-analysis of randomized controlled trials comparing vitamin D with placebo or no treatment. We used OVID to search MEDLINE (R), EMBASE and CENTRAL until April 2012. We screened the reference lists of included studies and used the “Related Article” feature in PubMed to identify additional articles. No language restrictions were applied. Two reviewers independently extracted data on methodological quality, participants, intervention, comparison and outcomes. Risk Ratios and 95% Confident Intervals for breast cancer were pooled using a random-effects model. Heterogeneity was assessed using the I2 test. In sensitivity analysis, we assessed the impact of vitamin D dosage and mode of administration on treatment effects. Only two randomized controlled trials fulfilled the pre-set inclusion criteria. The pooled analysis included 5372 postmenopausal women. Overall, Risk Ratios and 95% Confident Intervals were 1.11 and 0.74–1.68. We found no evidence of heterogeneity. Neither vitamin D dosage nor mode of administration significantly affected breast cancer risk. However, treatment efficacy was somewhat greater when vitamin D was administered at the highest dosage and in combination with calcium (Risk Ratio 0.58, 95% Confident Interval 0.23–1.47 and Risk Ratio 0.93, 95% Confident Interval 0.54–1.60, respectively). In conclusions, vitamin D use seems not to be associated with a reduced risk of breast cancer development in postmenopausal women. However, the available evidence is still limited and inadequate to draw firm conclusions. Study protocol code: FARM8L2B5L

    Epidemiology and etiology of Parkinson’s disease: a review of the evidence

    Full text link

    Survey of current perspectives on consumer-available digital health devices for detecting atrial fibrillation.

    No full text
    Background: Many digital health technologies capable of atrial fibrillation (AF) detection are directly available to patients. However, adaptation into clinical practice by heart rhythm healthcare practitioners (HCPs) is unclear. Objective: To examine HCP perspectives on use of commercial technologies for AF detection and management. Methods: We created an electronic survey for HCPs assessing practice demographics and perspectives on digital devices for AF detection and management. The survey was distributed electronically to all members of 3 heart rhythm professional societies. Results: We received 1601 responses out of 73,563 e-mails sent, with 43.6% from cardiac electrophysiologists, 12.8% from fellows, and 11.6% from advanced practice practitioners. Most respondents (62.3%) reported having recommended patient use of a digital device for AF detection. Those who did not had concerns about their accuracy (29.6%), clinical utility of results (22.8%), and integration into electronic health records (19.8%). Results from a 30-second single-lead electrocardiogram were sufficient for 42.7% of HCPs to recommend oral anticoagulation for patients at high risk for stroke. Respondents wanted more data comparing the accuracy of digital devices to conventional devices for AF monitoring (64.9%). A quarter (27.3%) of HCPs had no reservations recommending digital devices for AF detection, and most (53.4%) wanted guidelines from their professional societies providing guidance on their optimal use. Conclusion: Many HCPs have already integrated digital devices into their clinical practice. However, HCPs reported facing challenges when using digital technologies for AF detection, and professional society recommendations on their use are needed
    corecore